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Prediction of HPLC Conditions Using QSPR Techniques: an Effective
Tool to Improve Combinatorial Library Design

Sabine Schefzick,* Chris Kibbey, and Mary P. Bradley

Pfizer Global Research and DeVelopment, DiscoVery Technologies, Ann Arbor Laboratories,
2800 Plymouth Road, Ann Arbor, Michigan 48105

ReceiVed May 3, 2004

The purification and characterization of compounds resulting from parallel synthesis or combinatorial
chemistry has not yet been optimized to operate as a completely automated high-throughput process. Liquid
chromatography/mass spectroscopy (LC/MS) is most commonly employed to carry out the characterization
and identification of combinatorial compounds. This desired level of automation can only be accomplished
if the separation conditions for every compound in the combinatorial array are known prior to the analysis.
This study presents a quantitative structure retention relationship (QSRR) approach to predict the retention
time of structurally diverse solutes under 75 different LC/MS conditions. Sixty-two compounds were analyzed
using 15 commonly used HPLC columns under 5 different gradient conditions. The solute retention time
was used as the dependent variable, and more than 1000 molecular descriptors were calculated for this
compound set to generate QSRR models. After the elimination of highly correlated variables and those
with zero variance, two different genetic algorithms were applied to identify the most significant descriptors.
Following the variable selection, the identified descriptors were used to create QSRR models for each
separation condition. The calculated stepwise multiple linear regression models have been proven to be
statistically significant and highly predictive, with an average coefficient of determination (R2 ) of 0.86, an
average cross-validatedr2 of 0.62,r2 ) 0.76, and an averageF value of 27.29. The QSRR models can be
used to design “analysis-friendly” library purification plates, in which compounds are arranged on the basis
of their predicted separation condition and can also be used during the library design phase to flag compounds
not amenable to the separation methods in use.

Introduction

With the advent of combinatorial chemistry, high-
throughput synthesis methods have made it possible to
synthesize multiple compounds in parallel. Hence, follow-
up analysis methods, such as purification and characteriza-
tion, have been challenged to increase throughput to meet
the demands of combinatorial chemistry. To achieve the
desired degree of automation in the purification and char-
acterization of libraries, the liquid chromatography/mass
spectroscopy (LC/MS) conditions must be known prior to
the analysis. This involves significant effort in method
development to ensure the optimal conditions for each
compound. This requirement is impractical to achieve,
because there are typically a limited number of methods in
routine use at any given time. A reasonable substitute would
be to estimate which of the available methods would give
the best result for each compound in the library. Moreover,
this prediction could be performed on virtual compounds,
thereby facilitating the plating of compounds for purification
and analysis.

We applied a quantitative structure-retention relationship
(QSRR) analysis to relate the retention time of each of the
62 different compounds under 75 specific LC/MS separation
conditions to structural features of the compound using 1381

calculated molecular descriptors. Because the pool of avail-
able descriptors was large, genetic algorithms (GA) were
used to select the most relevant descriptors for further
analysis.

Background

The developments of combinatorial chemistry and high-
throughput screening have enabled the synthesis and screen-
ing of a greater number of new chemical entities (NCEs)
than would have been possible by traditional techniques.
However, these technologies are not sufficiently mature to
allow the synthesis and screening of the googol (10100) of
compounds1 that is estimated to exist in the virtual chemistry
space. Consequently, it is imperative to limit the chemical
space through efficient library design. Lipinski’s “Rule of
five”2 has been used to identify compounds with a high risk
of poor bioavailability on the basis of molecular mass,
lipophilicity, the number of hydrogen bond donors, and
acceptors. Lipinski’s “Rule of five” in combination with
ADME/T (adsorption, distribution, metabolism, excretion and
toxicity) filters can increase the chance to identify “drug-
like” bioactive compounds. Hence, a lot of time is invested
to select the most appropriate compound library for a
particular therapeutic area project. These compounds are then
enumerated and synthesized as combinatorial array(s). The
synthesized products are submitted for purification by high
performance liquid chromatography (HPLC), and the identi-
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ties of the final products are confirmed by analytical LC/
MS. Unfortunately, not all of the carefully designed com-
pounds will end up in the corporate compound database. In
practice, it is common to find attrition rates of 50-70%
within a combinatorial array due to a combination of failed
synthesis and loss of material during the purification and
characterization steps.

RP-HPLC, or reversed-phase high performance liquid
chromatography, is the most widely used purification and
separation technique in pharmaceutical companies. One
major advantage of HPLC is the possibility to analyze solutes
with a wide range of polarity in an automated process.
However, the process can only be completely automated if
the correct separation conditions are known prior to the
separation. The method development, including the selection
of HPLC stationary phase, mobile phase, gradient, etc., is
time-consuming and would be impractical to perform for all
compounds in a library. Hence, the traditional HPLC
paradigm needs to be adapted such that (a) many samples
can be processed in the shortest possible time, (b) there is
no interim method development, and (c) reequilibrations of
the HPLC system are kept to a minimum. The current
approach for purification and characterization to identify
separation conditions is driven by the experience of the
experimentalist. A tool that could be used to rapidly predict
the HPLC method on the basis of structural information
would serve to guide the compound flow during the
purification process and allow for greater optimization,
leading to higher throughput and success rates. Furthermore,
it is possible to use this information during the library design
process so that compounds that would be more likely to
experience difficulties during purification would obtain a
lower priority.

Several approaches have been published to predict the
solute retention behavior on a selected column. Every effort
is based on the linear solvation energy relationship (LSER),3-5

also known as solvatochromic equation, which relates the
reactivity parameter with solvent-solute interactions on the
basis of physicochemical properties.

Equation 1 defines the relationship between the capacity
factor,k′, and solute descriptors, whereR2 is excess molar
refraction,π2

H is the solute polarizability/dipolarity,Σ R2
H

andΣ â2 are the solute hydrogen-bond acidity and basicity,
andVx is the solute volume. The constantsc, r, s, a, b, and
V are specific for the system condition employed. This
approach describes contributions of individual intermolecular
interactions that are responsible for the partition behavior
of neutral molecules in octanol-water or reversed-phase
separation systems. The solute properties are empirical
descriptors, which are only available for about 4000 com-
pounds. Hence, this approach is limited to several thousand
compounds and, therefore, not feasible for our study.

Baczek and Kaliszan6-16 have demonstrated the prediction
of solute retention under a given set of linear, reversed-phase
gradient HPLC conditions by generating a quantitative
structure-retention relationship (QSRR) model. Specifically,

they have shown that the retention time of a solute under
gradient reversed-phase HPLC can be determined from the
following equation

whereµ is the total dipole moment,δmin is the electron excess
charge of the most negatively charged atom, andAwas is the
water-accessible molecular surface area of the solute. The
constantsk1, k2, k3, andk4 are related to the specific stationary
phase and mobile phase gradient employed in the separation.

Another simple quantitative structure retention time model
correlates the retention behavior with the logarithm of
n-octanol/water partition coefficient logP, which can be
calculated with a variety of computer programs with various
error margins.

Recently, Kaliszan presented a study that compared the
latter two approaches for predicting gradient retention.16 In
this study, eqs 1 and 2 revealed statistically significant QSRR
models; however, Kaliszan also showed that the predictive
power of these models is rather limited. Thus, Kaliszan
concludes “... a suitable translation which would reveal the
properties encoded into the structure in a reliable manner is
still lacking”.

Another recent approach uses the response (retention factor
log kw) to build a decision tree based on 266 molecular
descriptors (0D, 1D, and 2D) to predict the retention time
under isocratic conditions.17 Despite the fact that a statisti-
cally relevant model with good predictive power is achieved,
the author feels that a “... more diverse set of substances
with more diverse retention times ...” might be needed to
predict the chromatographic behavior. Therefore, the goal
of our study is to identify a standard set of structurally diverse
compounds along with the most suitable molecular descrip-
tors to predict the retention times of these solutes under 75
different HPLC conditions.

Several commercially available software programs17-23 are
available either to optimize the HPLC separation conditions
or to predict HPLC retention time; however, none of these
programs was developed for rapid analysis of combinatorial
libraries. Therefore, the predicted retention times are typically
>5 min.

We employed a QSRR approach to generate statistical
models that are used to predict a set of reversed-phase
gradient HPLC conditions best suited for the characterization
of combinatorial compounds. A database containing all 75
models is used to determine the predicted retention time of
every compound (using the solute’s QSRR descriptors) in
the library under each of the chromatographic conditions.

The calculated retentions of the solute under the analytical
chromatographic conditions are assigned to one of three bins:

log k′ ) c + rR2 + sπ2
H + R Σ R2

H + â Σ â2 + νVx (1)

tR ) k1 + k2µ + k3δmin + k4Awas (2)

retention parameter) k1 + k2 log P (3)

tR < 1.5 not retained

1.5< tR < 4.5 moderately retained

tR > 4.5 highly retained
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A chromatographic method that yields moderate retention
for a solute receives a score of 1 for that solute. Otherwise,
the chromatographic method receives a score of 0 for that
solute. The chromatographic method with the highest score
for all solutes in the virtual library is selected as the
recommended analytical method for the library. A similar
approach is applied to recommend a preparative chromato-
graphic method for library purification. In this case, analytical
HPLC columns with the same stationary phase and lengths
as the preparative HPLC columns are used to obtain the
retention time information. The retention time of the solute
under preparative HPLC condition is proportional to the
retention time of the solute under analytical HPLC conditions
and the flow rates of the mobile phase and indirectly
proportional to the square of the column diameters.

However, in this study we will focus our efforts on
predicting the solute’s retention behavior exclusively for
analytical HPLC conditions, which are implemented in the
characterization process of combinatorial compounds.

Experimental Section

Because the selection of the best HPLC conditions for a
given compound can be subjective, on the basis of the
experience and knowledge of the analytical chemist, we
declined to use preexisting analytical data to generate our

QSRR models. Therefore, we selected a standard solute
dataset to be analyzed under specific HPLC conditions that
would likely be used for high-throughput characterization
in our labs. These conditions were chosen in collaboration
with the experimentalist.

HPLC Columns. Cluster analysis of the chromatographic
conditions used in the analytical characterization of combi-
natorial libraries over the past several years revealed that
the majority of the characterization is performed on ap-
proximately 15 columns (listed below). These 15 HPLC
columns are listed in Table 1 together with some of their
physicochemical properties (Table 2). All HPLC columns
used in this study were newly purchased.

HPLC Gradients. For the purpose of this analysis, we
limited the analytical HPLC conditions to five linear gradient
programs listed below. Formic acid (1%) was added as a
modifier to the aqueous as well as the organic mobile phase.
Acetonitrile was chosen as organic mobile phase, since this
is the preferred organic phase in-house. Each of these 5
gradients was used in each of the 15 HPLC columns for a
total of 75 experiments for every compound in this study.

10% CH3CN f 100% CH3CN, 5 min
10% CH3CN f 50% CH3CN, 5 min
50% CH3CN f 100% CH3CN, 5 min
30% CH3CN f 70% CH3CN, 5 min
20% CH3CN f 80% CH3CN, 5 min

Table 1. List of HPLC Columns Frequently Used to Characterize Compounds

dimension particle size vendor

YMC Pro C18 4.6× 50 nm 3 Waters Corp.a

YMC Pack Phenyl 4.6× 50 nm 3 Waters Corp.a

Aquasil C18 4.6× 50 nm 3 Thermo Electron Corp.b

YMC Pack ODS AQ C18 4.6× 50 nm 3 Waters Corp.a

Res.Sys. Hydropore C18 4.6× 50 nm 3 Resolution Systemsc

MetaChem Polaris C18 4.6× 50 nm 3 MetaChemd
Xterra MS C8 4.6× 50 nm 3.5 Waters Corp.a

Xterra MS C18 4.6× 50 nm 3.5 Waters Corp.a

Waters Symmetry C18 4.6× 50 nm 3.5 Waters Corp.a

Alltima C18 4.6× 50 nm 3 Alltech Associates,Inc.e

Polymer Laboratories PLRP S 4.6× 50 nm 5 Polymer Laboratories Ltd.f

Phenomenex Prodigy Phenyl 4.6× 50 nm 3 Phenomenex Inc.g

Phenomenex SYNERGI MAX RP C12 4.6× 50 nm 4 Phenomenex Inc.g

Phenomenex SYNERGI Polar RP 4.6× 50 nm 4 Phenomenex Inc.g

Phenomenex Luna C8(2) 4.6× 50 nm 3 Phenomenex Inc.g

a See ref 24.b See ref 25.c See ref 26.d See ref 27.e See ref 28.f See ref 29.g See ref 30.

Table 2. Physicochemical Properties of the HPLC Columns Used in This Study

surface area
(m2/g)

pore size
(A)

pore volume
(mL/g)

C content
(%)

bonded phase coverage
(mmol/m2)

YMC Pro C18 335 120 1.06 16 2.5
YMC Pack Phenyl 300 120 1.0 9 3.2
Aquasil C18 310 100 0.9 12 1.8
YMC Pack ODS AQ C18 300 120 1.0 14 2.2
Res.Sys. Hydropore C18 300 120 1.0 15 NA
MetaChem Polaris C18 200 200 1.0 NA NA
Xterra MS C8 175 125 0.7 12 2.3
Xterra MS C18 175 125 0.7 15.5 2.2
Waters Symmetry C18 340 100 0.9 19.1 3.2
Alltima C18 340 100 NA 16 NA
Polymer Laboratories PLRP S NA NA NA NA NA
Phenomenex Prodigy Phenyl 450 100 1.06 10 NA
Phenomenex SYNERGI MAX RP C12 475 80 1.05 15 NA
Phenomenex SYNERGI Polar RP 475 80 1.05 11 NA
Phenomenex Luna C8(2) 400 100 NA 13.5 5.5
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Equipment. The chromatographic data were obtained
using an Alliance HT Waters 2795 LC/MS apparatus, which
is equipped with a pump, a variable-wavelength UV-vis
detector (Waters 996 Photodiodes Array Detector), autosam-
pler and thermostat. The mass spectrometer (Micromass
ZMD 2000) used for this study was a z-spray mass detector
equipped with a single quadruple mass analyzer and API
interface (electrospray & APCI). Data were collected and
processed using MassLynx 3.5, which is distributed by
Micromass, Ltd.

Chemicals and Solutes.ChromAR water; acetonitrile; and
formic acid, 88%, AR (ACS) were purchased from Mallinck-
rodt Laboratory Chemicals.

Of the 62 compounds used in this study, 48 compounds
(structures not shown) were obtained from Pfizer’s compound
database, and 14 compounds (Table 3) were purchased from
Sigma-Aldrich. The following test solutes were obtained
from Sigma Aldrich: [2S-(2a,3b,8ab)]-(+)-hexahydro-3-
(hydroxymethyl)-8a-methyl-2-phenyl-5H-oxazolo[3,2-a]py-
ridin-5-on, 4,5-diphenylimidazole, 4-hydroxy-2,5-diphenyl-
3-thiophenone 1,1-dioxide, 4-hydroxy-3-(R-iminobenzyl)-1-
methyl-6-phenylpyridin-2(1H)-one, 4-isobutyl-R-methyl-
phenylacetic acid, 6-hydroxy-1,3-benzoxathiol-2-on, 7-hy-
droxy-4-coumarinylacetic acid, 8-methoxypsoralen, furoin,
gramine, hydrocortisone, prednisolone, reserpine, and sul-
fadiazine. The concentrations of the solutes in the standard
solution varied from 1.5 to 2.0 mg/mL. The sample solutions
contained three or four compounds. The solutes were
dissolved in 1:1 v/v % CH3CN/H2O solution. Since it is well-
known that DMSO (dimethyl sulfoxide) influences the peak
shape, addition of DMSO was avoided as much as possible.

It was our intent to work with a solute set that is
representative of druglike compounds that shows histogram
plots of Lipinski’s Rule of 5 descriptors as well as the number
of rotatable bonds and polar surface area descriptors. All
compounds used in this study fell within “druglike” bound-
aries (MW< 500, ClogP< 5, hydrogen bond acceptors<
10, hydrogen bond donors< 5) with a distribution covering
a wide range of chemical space within the Lipinski guide-
lines. In addition, to further characterize that the diversity
of our solute set was representative of chemical space likely
to be encountered with a typical combinatorial library,
pairwise tanimoto coefficients (Tc) were used to analyze the
relative molecular diversity of the data set. Tanimoto
coefficients and the averageTc value were calculated using
the daylight fingerprints. The calculated averaged tanimoto
coefficient for 64 compounds used in the standard solute set
used in this study was 0.19( 0.20, indicating a high level
of diversity within the data set. For comparison, the MDDR
(MDL drug data report) database was used as a reference
database. For 81 796 MDDR compounds with a molecular
weight between 100 and 600 and rotatable bondse15, the
pairwise tanimoto coefficient was 0.29( 0.27.

Determination of the Retention Parameter for the
QSRR Studies.Each solute in the standard set was chro-
matographed three times on each of the 15 columns under
the five gradient conditions. All chromatographic measure-
ments were performed at 20°C with a mobile phase flow
rate of 1 mL/min. The injected sample volume was 20µL.

The average retention times, obtained from these experi-
ments, were used as the dependent variable to generate the
QSRR models. The retention times were manually deter-
mined from the chromatograms. The peak’s shape and its
influences (e.g., DMSO) were not considered in this study.

Molecular Descriptors of Solutes.Initially, 2419 descrip-
tors were calculated using the geometry-optimized 3-D
molecular structures.

MMFF9431 force field, embedded in SYBYL 6.9, was used
to generate the optimized 3D conformation. The same force
field was used to compute partial charges. Table 4 sum-
marizes the molecular modeling software and the descriptors
generated for this analysis.

Result and Discussion

Genetic Algorithm and Data Analysis.For each HPLC
method, the average retention time of every successfully
separated solute was combined with the available set of
descriptors. It is important to point out that it was not possible
to retrieve retention times for all 62 solutes under all 75
HPLC conditions. Because of variability in early and late
elution of solutes for each chromatographic analysis, our
datasets include∼43 observations for each method used.
With that in mind, it was important to perform the collinearity
and zero variance checking at this point because the datasets
for each method no longer include the identical number (or
composition) of observations. After the removal of descrip-
tors with a collinearity>90% and zero variance variables,
∼650 descriptors remained in the data set. Prior to the
application of genetic algorithm as variable selection tool,
the data sets were normalized using the BoxCoxAuto
technique in Partek,41 which is a power transformation tool
that automatically determines the most feasible normalization
algorithm.

Two different genetic algorithms (GAs) were used for
further variable selection. The first genetic algorithm utilized
a feature selection tool available through Partek. The other
genetic algorithm applied was the genetic function ap-
proximation available through Cerius2.42,43 In both cases,
10 000 generations were calculated with a population of 100.
The mutation probability was set to 0.05. All evolved linear
equations were of a fixed length of 10 variables. For the
GFA in Cerius2, the initial equation length was set to 10.
Because of the random nature of these algorithms, each GA
was applied three times to each dataset. The three best
equations per GA were selected, and each descriptor was
ranked on the basis of the frequency of selection by the GA
(maximum score) 3).

Using JMP,44 all 150 GA results (two different GAs
applied to 75 data tables) were combined using the sum-
rank fusion method45-47 (eq 4). Here,Ri(x) symbolizes the
rank position of the descriptorx for a specific HPLC method
i, and N is the number of different HPLC methods The
descriptors with the highest SUMx value were considered
the most significant descriptors for predicting the solutes
retention.

SUMx ) ∑
i)1

N

Ri(x) (4)
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Significant Descriptors. Table 5 lists the 20 most
frequently selected descriptors. Many of the selected descrip-
tors represent molecular parameters that are known to
influence the separation in RP HPLC. For example, it is well-
known that the ionization state (neutral or charged) of a
compound will affect the retention behavior of the solute.
Moreover, under the HPLC conditions used in this study,
amines will be charged, whereas the carboxylic group will

be neutral. Therefore, it makes sense that the number of
amines (#amine) and aromatic amines (nNHRPh) impact the
prediction behavior more than the number of carboxylic acids
(nCOOHPh).

Likewise, it is not surprising that ClogP was selected as a
significant variable since the partitioning of a compound
between liquid aqueous and organic phases is related to the
solute’s partition equilibrium between mobile and stationary

Table 4. List of Calculated Descriptors

no. of descriptors software description of descriptors

1496 Dragon32 2D autocorrelations descriptors, 3D-MoRSE descriptors, BCUT
descriptors, GETAWAY descriptors, Galvez topological charge indices,
RDF descriptors, Randic molecular profiles, WHIM descriptors,
aromaticity indices, atom-centered fragments, charge descriptors,
constitutional descriptors, empirical descriptors, functional group
counts, geometrical descriptors, molecular walk counts, properties,
topological descriptors

199 MOE33 physical properties, subdivided surface areas atom counts and bond
counts, Kier & Hall connectivity and kappa shape indices, adjacency
and distance matrix descriptors, pharmacophore feature descriptors,
partial charge descriptors, potential energy descriptors, surface area,
volume and shape descriptors, conformation dependent charge descriptors

36 Qikprop34 2D, 3D descriptors and pharmaceutically relevant properties of organic
molecules, e.g., aqueous solubility (log S), brain/blood partition
coefficient (log BB), CNS activity

50 HiVol35/Sybyl36 2D and 3D descriptors, topology descriptors, dipole moment
401 MolconnZ37 molecular connectivity, shape, and information indices
88 Volsurf38 2D molecular descriptors derived from 3D molecular interaction energy

grid maps
142 TSAR39 molecular attributes, number of connectivity, shape, topology, and

electrotopology indices, counts of atoms, rings, groups, and H-bond
donors and acceptors, electrostatic calculations

17 webpk40 in-house program
2419 total

Table 5. List of the 20 Most Frequently Selected Descriptors by Genetic Algorithm

descriptors description frequency count % selected

#amine number of nonconjugated amine (QikProp) 150 33.33
CLogP Biobyte’s log P (Sybyl6.9) 127 28.22
nNHRPh number of secondary amines (aromatic)

(Dragon)
100 22.22

vsa•other approximation to the sum of VDW surface
areas of atoms typed as “other” (MOE)

52 11.56

Atype•N•68 AlogP N in:Al3N (Cerius2) 49 10.89
DCASA absolute value of the difference between CASA+

(positive charge weighted surface area, ASA+
times max{qi > 0}) and CASA- (MOE)

47 10.44

C-027 response to R-CH-X, Ghose-Crippen atom
centered fragment (Dragon)

45 10.00

donors HIVol donor (Sybyl6.9) 36 8.00
DASA absolute value of the difference between ASA+

(water-accessible surface area of all atoms with
positive partial charge (strictly>0)) and ASA-
(MOE)

35 7.78

QplogKp predicted skin permeability (QikProp) 35 7.78
FASA+ fractional ASA+ calculated as ASA+/ASA (MOE) 34 7.56
PDsol (mcg/mL) aqueous solubility (webPK) 34 7.56
Group•count•for•chain•c)n group•count•for•chain•c)n (TSAR) 33 7.33
nCOOHPh number of carboxylic acids (aromatic) (Dragon) 33 7.33
H8m H autocorrelation of lag 8/weighted by atomic

masses GETAWAY (dragon)
31 6.89

HATS3u leverage-weighted autocorrelation of
lag3/unweighted GETAWAY (Dragon)

31 6.89

estate•sCH3 estate for CH3 group (Sybyl 6.9) 30 6.67
Group•count•for•Phenyl group•count•for•Phenyl (TSAR) 29 6.44
CLogP•error biobyte’s log P (Sybyl6.9) 29 6.44
SlogP•VSA9 sum ofVi such thatLi > 0.40 (MOE) 28 6.22
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phase. Particular, the nitrogen in aliphatic substructures is
of importance, because the AlogP of nitrogen (:Al3N)48 is
ranked as the fourth most important descriptor identified by
the GAs. In addition, we observed a relevant contribution
of different water-accessible surface descriptors (DCASA,
DASA, FASA+), which is in agreement with the results of
Baczek et al.,16 who found that a water-accessible molecular
surface area descriptor, calculated in Hyper-Cube, also
showed a significant contribution in their QSRR studies.

The retention behavior of solutes was originally described
by eq 1. Two of the four terms describe the relationship of
the retention time of a solute and the hydrogen bonding
capability of the solute. Hydrogen bond properties can also
be described by the number of donor atoms in the compound,
another descriptor identified by the GAs. The last term of
Abraham’s equation is the cavity term, which is related to
the energy necessary to form a cavity for the solute in the
solvent. This term is dependent on the volume of the solute.
This dependency is described using GETAWAY (geometry,
topology, andatom-weights assembly)49,50 descriptors, in
which two of these descriptors (HATS3u, H8m) significantly
contribute to the retention time. Both descriptors reveal
information about size and shape of the molecules. (HATS3u
and H8m belong to the H-GETAWAY descriptors, in which
the molecular influence matrix and especially the diagonal
elements of this matrix are used to determine specific size
and shape properties.) HATS3u and H8m are spatial auto-
correlation descriptors, which summarize contributions of a
specific path length (lag) in the molecular graph. Overall,
all descriptors selected by the genetic algorithm can be
physically explained, which is somewhat surprising, con-
sidering the large number of descriptors available for the
analysis and the considerable variable reduction afforded by
removing the correlated and invariant descriptors.

Stepwise Multiple Linear Regression.After identifying
a suitable subset of variables, stepwise multiple linear
regression was chosen to generate QSRR equations for all
HPLC conditions tested. Stepwise multiple linear regression
produces a multiple-term linear equation; however, not all
independent variables are used. Step-by-step variables are
added to the equation, and a new regression is performed. If
the new variable contributes significantly to the regression
equation, the variable is retained; otherwise, the variable is
excluded, hence preventing overfitting. Stepwise multiple
linear regressions were performed in the QSAR module of
Cerius2. All 20 variables were used to generate stepwise
regression equations (parameters: forward search, 100 max.
steps,F value 2.00) for all HPLC conditions. A Cerius2 script
was used to generate and export all the regression equations.

During the following discussion of the generated QSRR
models, we will refer tor2 as the square of the correlation
coefficient obtained from the stepwise multiple linear regres-
sion in the training set and toq2 as the leave-one-outr2.
Alternatively, we will refer to R2 as the square of the
correlation coefficient in the test set, estimating the predictive
ability of the generate QSRR models.

Twelve different training and test sets of each data table
were used to evaluate the predictive power of the QSRR
models. All 75 datasets were randomly divided into 12

different training sets, each including 80% of the original
dataset. The remaining 20% of the original datasets were
used to estimate the predictability of the generated QSRR
models. For each training set, a stepwise regression model
was constructed using the procedure described above.

Afterward, these QSRR equations were used to predict
the retention time for observations included in test set.
Golbraikh et al.51,52 suggested that QSRR models are only
acceptable if theq2 is >0.5 and the predictiveR2 is >0.6.
Moreover, the square of the correlation coefficientR2 must
be close toR0

2, the square of the correlation coefficient for
a regression with 0 intercept. The slope of the regression
models is also identified as a critical factor and should take
values close to 1.0.

Table 6 lists the average results for all 75 datasets. The
model with the bestR2 (best predictably) found for each
dataset was used to identify the best predictive QSRR model
for a specific HPLC condition. The average predictability
of all 75 QSRR models is quite good, with aR2 ) 0.86. A
pictorial presentation of the distribution of the statistical
results is depicted in Figure 2. Figure 2 shows the distribution
of the statistical parameters for QSRR models of the training
sets, whereas Figure 3 represents the distribution of QSRR
statistics for the test sets. The average number of descriptors
for all models was 7.4. It can be seen in Figure 3 thatR2 is
>0.6 for the majority of QSRR models (71 out of 75), and
two models haveR2 between 0.5 and 0.6.

Two additional QSRR models, both from the anticipated
Aquasil HPLC column, are not predictive for the test set
compounds. It is not surprising that the Aquasil C18
experiments were poorly predicted. A frequency table (Table
9) indicates that only 6 of 20 variables chosen by the GAs
are important for this particular column. This implies that
this stationary phase must have physicochemical properties
different from all the other columns. Moreover, it can be
observed from Figure 3 that the linear regression between
observed and predicted retention time shows an average
slope,k, of 1.07 and an average intercept of 0.04. The square
of the correlation coefficient for a linear regression though
the origin (R0

2 ) 0.76) is close to the square of the correlation
coefficient R2 ) 0.86, which indicates statistically stable
models. The predictability of the QSRR models is evaluated
by identifying the square of the correlation coefficient,R2,
of the observed versus the predicted retention time for a set
of compounds that were not used to generate the QSRR
models.

Figure 4 shows the actual versus predicted plots of the
test set compounds for the models with the best and poorest
predictive ability. The corresponding predicted and actual
retention time values for these compounds are listed in

Table 6. Averaged Stepwise Multiple Linear Regression
Results Obtained from the Most Predictive Test and Training
Set per HPLC Condition

test sets training sets

R2/r2 0.863 0.762
q2 0.621
F 27.29
Nobs 8.00 35.00
Nvar 2.00 7.42
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Table 7. Since the structures of some compounds are not
disclosed, we looked for any differences in the descriptors
for test set compounds in the models with good predictability

versus test set compounds in the model with bad predict-
ability. In general, the values for the descriptors are in the
same range. The only differences we are able to point out is

Figure 1. Illustration of the structural diversity in the standard solute set.

Figure 2. Statistical result from the stepwise multiple linear regressions for the most predictive QSRR model for each HPLC condition
experiments (r2 symbolizes the square of the correlation coefficient,F value indicates a “signal-to-noise” ratio,q2 stands for a LOO-r2,
NObs is an abbreviation for the number of observation, and NVars the number of variables).
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that the randomly selected test compounds in the data set
with good predictably have twice the number of hydrogen
bond donor atoms and only half of the average value of
descriptors DCASA and DASA. These findings might
indicate that the ratio of positive versus negative charged
surface areas is slightly smaller for compounds in the good
predictive model.

The worst predictive model is the QSRR model for
experiment 14, in which the Aquasil HPLC column was
combined with a 30-70% CH3CN gradient. The QSRR
model with the best predictability can be used to predict the
retention time of new solutes separated on the Waters

Symmetry C18 with a 10-100% CH3CN gradient. As
expected, the type of packing material in the HPLC column
influences the quality of the QSRR. Conversely, the mobile
phase gradient seems to have no significant influence on the
QSRR model (Figure 5). However, the average predictability
for QSRR models using a mobile phase gradient of 10-
50% CH3CN and 30-70% CH3CN are below the grand mean
of the average square of the correlation coefficient (R2).

To verify that all of the variables were making a significant
contribution to the model (i.e., no single descriptor was
overwhelming the model), we regenerated each model,
leaving out each descriptor in turn. The averagedq2 value

Figure 3. Statistical results of observed versus predicted linear regression for the most predictive QSRR model used as a measure for the
predictability.

Table 7. Normalized Observed and Predicted Retention Time Values for the Best and Worse Predictive QSRR Model

best predictive model worse predictive model

compd observed RT predicted RT observed RT predicted RT

Pfizer 1 0.95 0.58
Pfizer 2 1.18 0.54
Pfizer 3 -0.62 0.48
Pfizer 4 -1.38 0.38
Pfizer 5 -1.82 -0.13
Pfizer 6 -1.87 -1.61 -1.43 -0.38
Reserpine -0.20 -0.13 0.67 -0.01
Pfizer 7 -1.85 -1.57
7-Hydroxy-4-coumarinylacetic acid -0.76 -0.31
Pfizer 8 -0.40 -0.30
Pfizer 9 0.19 0.47
Pfizer 10 0.47 0.57
Pfizer 11 0.75 0.85
Pfizer 12 1.74 1.65
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obtained from these models indicates that the models are
extremely stable (q2 ) 0.623( 0.01); no single variable is
dominant. To further validate that the models generated were
not statistical anomalies, we randomized each data set by
scrambling the dependent variable for each observation. This
randomization procedure should yield models with little or
no statistical significance. To measure the randomization,

we took the ratio of the number of standard deviations of
the mean value of the correlation coefficient of all random
trials to the nonrandom correlation coefficient value. The
larger this number, the greater the likelihood that the model
generated with nonrandom data represents a true relationship
between the data variables and activity. The mean value for
this ratio (automatically generated in the Cerius2 software)
was 3.44, considering all 75 QSRR models. The averaged
r2 andq2 values for the randomized data sets were 0.229(
0.02 and 0.074( 0.01, whereas ther2 andq2 values for the
original data set werer2 ) 0.784 andq2 ) 0.678 (Table 8).

Conclusion

In this study, we successfully provided QSRR models for
75 different HPLC experiments (5 gradients for each of 15
different columns) that predict the retention time for a given
standard solute set under all the different HPLC conditions
tested. Over 2000 descriptors were calculated for each of
the solutes, and two different genetic algorithms were
deployed to identify statistically significant variables in a
huge pool of descriptors. Using a fusion method, the results
of the GAs were combined, and the 20 best overall variables
were identified for all HPLC methods. Afterward, these 20
variables were used as starting points to generate QSRR
models for all HPLC conditions using stepwise linear
regression. Overall, it was possible to generate 71 of 75
statistically significant and predictive QSRR models, with
an averager2 ) 0.76 andq2 ) 0.62. Work is currently

Table 8. Averagedr2 and Cross-Validatedr2 Values for
Five Different Randomized Datasetsa

r2 q2

original dataset 0.762 0.621
randomized dataset 1 0.225 0.077
randomized dataset 2 0.222 0.074
randomized dataset 3 0.242 0.088
randomized dataset 4 0.242 0.069
randomized dataset 5 0.215 0.065

a For the sake of comparison, the same statistical measures are
listed for the original data sets.

Figure 4. Plot 1 illustrates the observed versus the predicted
retention time for the worse data set. Plot 2 depicts the observed
versus the predicted retention time for the best data set.

Figure 5. Correlation between gradient and predictability of the QSRR models.
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underway to utilize these models in the design of combina-
torial libraries as well as to select an analytical method for
purification and characterization of singleton compounds in
an open access analytical lab, where expert analysis may
not be readily available.
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